陈涓涓
日期:2021-11-01 阅读次数: 作者: 来源:beat365


   
姓    名: 陈涓涓    
性    别:

女        

职    称: 副教授
学    历: 博士
职    务:
电    话: 059188267963
专    业:
电子邮件: cjj_pp@126.com
研究方向: 肿瘤治疗和分子诊断

                           

                               教育工作经历                              

2003.09-2008.07 北京大学 医学部                             本科
2008.09-2013.07 北京大学 化学与分子工程学院     硕博连读
2014.08-至今      beat365正版唯一官网                                          工作

                             


                               教学简介                              

高等无机化学

无机化学B

实验室安全与环保

普通化学实验B

                             


                               科研简介                            

  致力于开展化学、生物与医学交叉领域的研究工作,目前主要集中于肿瘤的光动力治疗以及与疾病相关的分子事件检测。
1. 光动力治疗: 着眼于解决光动力治疗的前沿问题,发展高效精准光敏剂用于肿瘤及相关疾病的治疗。
2. 疾病相关分子事件的检测检测:着眼于当前重大疾病如肿瘤和糖尿病等,发展能够对这些疾病进行及早响应的探针,实现疾病的早期且灵敏的诊断。

                             


                               科研项目                              

承担科研项目有:

1. 国家自然科学基金项目(No.81703345,No.21974009)
2. 福建省自然科学基金项目 (No.2016J05034,No.2021J01549)
3. 福建省教育厅科技项目(No.JA15084)
4. beat365正版唯一官网引进人员基金                                                                                                          

                           

                               代表性论文                              

1. Novel molecular photosensitizer with simultaneously GSH depletion, aggregation inhibition and accelerated elimination for improved and safe photodynamic therapy. European Journal of Medicinal Chemistry 2023, 245, 114938.


2. A novel hierarchical targeting and controllable smart nanoparticles for enhanced in situ nuclear photodynamic therapy, Nano Research, 2022, 15, 4212-422


3. EGFR-targeted photosensitizer for enhanced photodynamic therapy and imaging therapeutic effect by monitoring GSH decline, Sensors and Actuators: B. Chemical, 2022, 355, 131275.

4. A hydrogen sulfide-responsive prodrug for monitoring real-time release and improving therapeutic effects of anticancer drug SN-38. Sensors and Actuators B: Chemical 2022, 373, 132750.

5.  A phthalocyanine-based photosensitizer for effectively combating triple negative breast cancer with enhanced photodynamic anticancer activity and immune response. European Journal of Medicinal Chemistry 2022, 241, 114644.


6. A novel zinc phthalocyanine-indometacin photosensitizer with “Three-in-one” cyclooxygenase-2-driven dual targeting and aggregation inhibition for high-effcient anticancer therapy, Dyes and Pigments, 2022, 198, 109997.

7. An aromatase inhibitor in combination with Zinc(II) phthalocyanine for targeted therapy of post-menopausal breast cancer, Dyes and Pigments, 2022, 202, 110281.

8. A glutathione and hydrogen sulfide responsive photosensitizer for enhanced photodynamic therapy. Dyes and Pigments 2022, 205, 110529.

9. A monoamine oxidase-A inhibitor phthalocyanine conjugate for targeted photodynamic therapy and inhibition of prostate cancer metastasis in vitro. Dyes and Pigments 2022, 207, 110717.

10. A novel Pim-1 kinase-targeted photosensitizer to combat triple-negative breast cancer with enhanced photodynamic efficacy and reduced metastasis. Dyes and Pigments 2022, 207, 110778.

11. A MCL-1-targeted photosensitizer to combat triple-negative breast cancer with enhanced photodynamic efficacy, sensitization to ROS-induced damage, and immune response. Journal of Inorganic Biochemistry 2022, 237, 111997.

12. Targeted Drug Delivery System Based on Copper Sulfide for Synergistic Near-Infrared Photothermal Therapy/Photodynamic Therapy/Chemotherapy of Triple Negative Breast Cancer. Langmuir 2022, 38, 15766-15775.

13. Fluorescence-Reporting-Guided Tumor Acidic Environment-Activated Triple Photodynamic, Chemodynamic, and Chemotherapeutic Reactions for EfficientHepatocellular Carcinoma Cell Ablation, Langmuir, 2022, 38, 5381-5391.


14. Novel     Targeted Photosensitizer as an Immunomodulator for Highly Efficient Therapy of T‑Cell Acute Lymphoblastic Leukemia, Journal of Medicinal Chemistry,   2020, 63, 15655-15667.  
 
15. Improved photodynamic anticancer activity and mechanisms of a promising zinc(II) phthalocyanine-quinoline conjugate photosensitizer in vitro and in vivo, Biomedical Optics Express, 2020, 11, 3900-3912.  
16. Blood distribution and plasma protein binding of PHOTOCYANINE: a promising phthalocyanine photosensitizer inphaseⅡ clinical trials, European Journal of Pharmaceutical Sciences, 2020, 153, 105491.  
17. Enhanced Efficacy of Gefitinib in Drug-sensitive and Drug-resistant Cancer Cell Lines after Arming with a Singlet Oxygen Releasing Moiety, ChemMedChem, 2022, 15, 794-802.  
18.  Enhanced Synergistic Antibacterial Activity through a Smart Platform Based on UiO-66 Combined with Photodynamic Therapy and Chemotherapy, Langmuir, 2020, 36, 4025-4032.  
19. Epidermal Growth Factor Receptor-Targeted Delivery of a Singlet-Oxygen Sensitizer with Thermal Controlled Release for Efficient Anticancer Therapy, Molecular Pharmaceutics, 2019, 16, 3703-3710.  
20.  An epidermal growth factor receptor-targeted and endoplasmic reticulum-localized organic photosensitizer toward photodynamic anticancer therapy, European Journal of Medicinal Chemistry, 2019, 182, 111625.  

21.  A novel fabricated material with divergent chemical handles based on UiO-66 and used for targeted photodynamic therapy, Journal of Materials Chemistry B, 2017, 5, 6227-6232.  
14. A novel tumor and mitochondria dual-targeted photosensitizer showing ultra-efficient photodynamic anticancer activities, Chemical Communication, 2019, 55, 866-869.  

22. A novel fabricated material with divergent chemical handles based on UiO-66 and used for targeted photodynamic therapy, Journal of Materials Chemistry B, 2017, 5, 6227-6232.  
23.  Zeolitic imidazolate metal organic framework-8 as an efficient pH-controlled delivery vehicle for zinc phthalocyanine in photodynamic therapy, Journal of Matericals Science, 2018, 53, 2351-2361.  
24.  Silicon Phthalocyanines Axially Disubstituted with Erlotinib toward Small-Molecular-Target-Based Photodynamic Therapy, ChemMedChem, 2017, 12, 1504-1511.
 
25. Erlotinib Analogue-substituted Zinc(II) Phthalocyanines for Small Molecular Target-based Photodynamic Cancer Therapy, Chinese Journal of Chemistry,2016.10.01,34(10):983~988.
26. A sensitive and quantitative autolysosome probe for detecting autophagic activity in live and prestained fixed cells., Autophagy, 2013, 9(6): 894-904.
27. Rational design of ZnSalen as a single and two photon activatable fluorophore in living cells, Chemical Science, 2012, 3(11):3315-3320.
28. [small beta]-Lactonization of fluorinated porphyrin enhances LDL binding affinity, cellular uptake with selective intracellular localization, Chemical Science, 2014, 5(2): 558-566.
29. Luminescent zinc salen complexes as single and two-photon fluorescence subcellular imaging probes, Chemical Communications, 2011, 47(8): 2435-2437.
30. A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications, Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(12): 4455-4460.
31. β-Ionic Conjugated Chlorin-Type Photosensitizers Based on Porpholactone: Synthesis, Photophysical Properties, and Photodynamic Activity, ChemPlusChem, 2015, 80(1): 237-252.
32. Construction of an orthogonal ZnSalen/Salophen library as a colour palette for one- and two-photon live cell imaging, Chemical Science, 2014, 5(6): 2318-2327.
33. Rational design of true monomeric and bright photoactivatable fluorescent proteins, Nature Methods, 2012, 9 (7): 727-729.
34. Light-induced protein translocation by genetically encoded unnatural amino acid in Caenorhabditis elegans, Protein & Cell, 2013, 4(12): 883-886.
 


上一篇:梁志军
下一篇:潘海波